随着现代农业和工业的发展,带式运输机在各种生产作业中发挥着逐渐重要的作用。然而,在带式运输机运行过程中,可能会混入各种异物,这些异物的存在可能会对运送过程和设备本身造成损害。未解决这一问题,本文将介绍一种基于AI算法的异物识别视频分析方法。
带式运输机在各种生产作业中大范围的应用,如煤炭、矿石、粮食等物料的运输。然而,在运送过程中,难免会有异物混入。这些混入的异物可能对带式运输机本身造成损害,如撕裂皮带,降低效率等。同时,异物也有一定可能会影响生产作业的顺利进行。因此,实时、准确地识别带式运输机中的异物,对于保障生产安全和提高生产效率具备极其重大意义。
基于深度学习的AI算法,能够最终靠对视频的分析,自动识别出带式运输机中的异物。该算法主要基于卷积神经网络(CNN)进行构建。CNN可以通过学习大量样本数据,自动识别出图像中的物体。我们将这一原理应用于带式运输机的视频分析中,通过训练AI算法,使其能够识别出各种可能的异物。
1. 数据采集:首先,我们应该收集大量的带式运输机运行时的视频数据,包括混入异物的和非混入异物的。这一些数据将作为AI算法训练的样本。
2. 模型训练:使用收集到的样本数据,通过深度学习框架(如TensorFlow或PyTorch)训练AI算法。在训练过程中,我们将逐步优化算法,使其能够更好地识别出异物。
3. 视频分析:训练完成后,我们将使用优化后的AI算法对新的带式运输机视频进行实时分析,以此来实现对异物的实时监测和预警。
1. 优势:基于AI的异物识别视频分析方法具有实时性、准确性和高效性。通过实时监测,可以及时有效地发现并处理混入的异物,避免其对生产作业的影响。同时,该方法无需人工干预,降低了人力成本。
2. 局限性:首先,AI算法的准确性和实时性受训练数据的质量和数量影响。其次,对于一些特殊或复杂环境(如强光、阴影等)下的异物识别,可能仍需要人工干预和调整。最后,对于一些新型或未知的异物,在大多数情况下要进一步优化算法或增加额外的识别特征。
本文介绍了基于AI算法的带式运输机异物识别视频分析方法。该方法通过深度学习技术,实现对带式运输机运行过程中异物的实时监测和预警,具有实时性、准确性和高效性等优点。虽然存在一定的局限性,但随着训练数据质量和数量的提高,以及算法的逐步优化,该方法的应用前景将更加广阔。
中伟视界矿山版AI盒子包含的算法有:皮带运作时的状态识别(启停状态)、运输带有无煤识别、煤流量检测、皮带跑偏、异物检测、下料口堵料、井下堆料、提升井堆煤检测、提升井残留检测、输送机空载识别、传输机坐人检测、行车不行人、佩戴自救器检测、风门监测、运料车通行识别、工作面刮板机监测、掘进面敲帮问顶监控、护帮板支护监测、人员巡检、入侵检测、区域超员预警、未戴安全帽检测、未穿工作服识别、火焰检测、离岗睡岗识别、倒地检测、摄像机遮挡识别、摄像机挪动识别等等算法。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
《柳叶刀》发表研究:到本世纪末,97%国家人口将减少 世卫专家:对预测需谨慎
新加坡队长是房产中介?他在俱乐部年薪超150万,卖房子其实是兼职和“想后路”
广州网红盘大降价引业主不满,项目工作人员称“就如买股票也有涨跌”,专业的人建议“单次价格调整幅度限制在15%”
妹子天生两套生殖系统,所以交两个男友... 她理直气壮:他们各用各的,我就不算出轨….
Doogee T30 Max 平板电脑上市,首发价 296.10 美元
2TB 2499元!光威神策PRO PCIe 5.0 SSD上架:读速高达12GB/s
华硕破晓 X mini 迷你主机上市:酷睿 Ultra 处理器,5199 元起